บทคัดย่อ การวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาประสิทธิภาพของระบบบึงประคิษฐ์ในการบำบัคน้ำเสีย จากการผลิตกระคาษสา ปลูกต้นกกรังกา โดยทำการศึกษาที่อัตราการไหล 40, 120, 1,800 ลิตร/วัน พบว่า ระบบบึงประคิษฐ์ที่มีการไหลในแนวคิ่ง (VSF) มีประสิทธิภาพในการกำจัคซีโอคี บีโอคี สี และของแข็งแขวนลอยได้ 19.2-44.2%, 23.1-44.1%, 15.5-38.0% และ 26.9-40.7% ตามลำคับ ในส่วนของระบบบึงประคิษฐ์ที่มีการไหลในแนวราบ (HSF) มีประสิทธิภาพในการกำจัคซีโอคี บีโอคี สี และของแข็งแขวนลอยได้ 28.7-49.3%, 47.7-90.2%, 37.1-74.2% และ 61.1-66.2% ตามลำคับ เมื่อพิจารณาระบบบึงประคิษฐ์ที่มีการไหลในแบบผสมผสาน (VSF+HSF) มีประสิทธิภาพในการกำจัคซีโอคี บีโอคี สี และของแข็งแขวนลอยได้ 42.3-71.7%, 59.8-94.5%, 48.6-84.0% และ 71.6-80.0% ตามลำคับ ## **ABSTRACT** The objective of this study was to investigate the efficiencies of wastewater treatment from saa paper production by constructed wetland system. The Bulrush: *Cyperus* spp. was planted in the wetland system. The constructed wetland systems were operated at the flow rates of 40 l/day, 120 l/day, and 1,800 l/day. This research found that in the vertical subsurface flow constructed wetland system (VSF), where the flow rate has increased, the efficiency for eliminating pollutants has then been decreased respectively. The removal efficiency of COD, BOD, color and suspended solid was 19.2-42.2%, 23.1-44.1%, 15.5-38.0% and 26.9-40.7% respectively. For the horizontal subsurface flow constructed wetland system (HSF), where the flow rate has increased, the efficiency for eliminating pollutants has then been decreased respectively. The removal efficiency of COD, BOD, color and suspended solid was 28.7-49.3%, 47.7-90.2%, 37.1-74.2% and 61.1-66.2% respectively. In the hybrid system (VSF+HSF), the effluent from VSF is then treated by the HSF. The best hybrid system performances were found at the flow rate of 40 l/day with the overall removal efficiency of COD, BOD, color and suspended solid at 42.3-71.7%, 59.8-94.5%, 48.6-84.0% and 71.6-80.0% respectively.