

สารบัญตาราง

สารบัญภาพ

ภาพที่	หน้า
2.1 ผล XRD ของ Bovine hydroxyapatite	13
2.2 ผล XRD ของ Bovine hydroxyapatite	
($ullet$ HA; Δ FA; \Box HA (OH, Cl, F rich) ; (eta whitlockite)	14
2.3 ผล XRD ของ Human hydroxyapatite ($ullet$ HA; Δ FA; \Box HA (OH, Cl, F rich)	14
2.4 ผล XRD ของไฮดรอกซีอะพาไทต์ที่บริสุทธิ์	15
2.5 โครงสร้างและรูปร่างที่หลากหลายของไฮดรอกซีอะพาไทต์ในระดับนาโน	
ที่สังเคราะห์ด้วยวิธี ต่าง ๆ ได้แก่ A-B โชลเจล C การตกตะกอนร่วม D	
เทคนิคอีมัลชัน E ไฮโดรเทอมอล F อัลทราโซนิก G ปฏิกิริยาเคมีด้วยการบดเชิงกล	
H-L การใช้แม่แบบ M ไมโครเวฟ N เทคนิคอีมัลชันร่วมกับไฮโดรเทอมอล	$\mathbf{\Lambda}$
และ O ไมโครเวฟร่วมกับไฮโดรเทอมอล	16
2.6 แบบอย่างการเลี้ยวเบนของรังสีเอ็กซ์ของผงหลังจาก vibro-milling	- \
แสดงให้เห็นความสอดคล้องเป็นอย่างดีกับเฟสไฮดรอกซีอะพาไทต์ที่บริสุทธิ์	17
2.7 ความสัมพันธ์ระหว่าง vibro milling time และ crystallite size	
พบว่ามีการเปลี่ยนแปลงที่ไม่สำคัญของ FWHM กับการเพิ่มของ vibro milling time	P
ซึ่งแสดงให้เห็นว่าขนาดผลึกของ HA ไม่มีปฏิกิริยากับ vibro milling time	18
2.8 SEM ของผงไฮดรอกซีอะพาไทต์ที่มี vibro milling time (a) 2 ชั่วโมง และ (b) 8 ชั่วโมง	18
2.9 TEM ของผงนาโนไฮดรอกซีอะพาไทต์และแบบอย่างวงแหวนของการเลี้ยวเบน	19
2.10 TEM ของระยะห่างระหว่างขอบแลคทิคของ 2 ระนาบ (a) (100) และ (b) (101)	19
2.11 ผลึกไฮดรอกซีอะพาไทต์ในกระดูก	20
2.12 การรวมตัวเป็นกลุ่มก้อนของอนุภาคนาโนของเซรามิก	21
2.13 ผล SEM ของชิ้นงานตัวอย่างที่ทำการทดลองโดย Han และคณะ	23
2.14 ผล SEM ของชิ้นงานตัวอย่างที่ทำการทดลองโดย Shu และคณะ	23
2.15 วิธีการเผาซินเตอร์ (a) แบบดั้งเดิม และ (b) แบบ rate-controlled sintering (RCS)	25
.2.16 วิธีการเผาซินเตอร์แบบ two-step sintering โดย Zhou และคณะ	26
3.1 โปรแกรมการเผาซินเตอร์ (a) แบบดั้งเดิม และ (b) แบบ rate-controlled sintering	28
3.1 โปรแกรมการเผาซินเตอร์ (a) แบบดั้งเดิม และ (b) แบบ rate-controlled sintering (ต่อ)	29
3.2 เครื่อง X-ray diffraction (XRD)	29
3.3 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	30
3.4 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน	30
3.5 เครื่องทดสอบความแข็งแบบวิกเกอร์	32
3.6 The ball-on-ring tests	32
3.7 รอยกดจาก Vickers tests และการวัดความยาวของรอยแตก c	31
4.1 สัณฐานวิทยาของผงกระดูกควายหลังบดด้วยเครื่องบดแบบสั่นความเร็วสูง	
เป็นเวลา 2 ชั่วโมง ที่ถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM)	35

สารบัญภาพ

ภาพที่	หน้า
4.2 แบบอย่างการเลี้ยวเบนของรังสีเอกซ์ของผงนาโนไฮดรอกซีอะพาไทต์	
เมื่อเผาแคลไซน์ที่อุณหภูมิ (a) 600°C (b) 700°C (c) 800°C และ (d) 900°C ตามลำกับ	36
4.3 EDS สเปกตัมของผงนาโนไฮดรอกซีอะพาไทต์	36
4.4 สัณฐานวิทยาของผงนาโนไฮดรอกซีอะพาไทต์ หลังเผาแคลไซน์ที่อุณหภูมิ 600°C	
ที่ถ่ายจากกล้องอิเล็กตรอนแบบส่องกราด (SEM)	37
4.5 ผงนาโนไฮดรอกซีอะพาไทต์และแบบอย่างวงแหวนของการเลี้ยวเบนที่ถ่ายจาก	
กล้องอิเล็กตรอนแบบส่องผ่าน (TEM)	38
4.6 ความสัมพันธ์ระหว่างอุณหภูมิที่ใช้ในการเผาซินเตอร์กับความหนาแน่นของ	
ชิ้นงานตัวอย่างที่ประดิษฐ์จากผงในระดับนาโนและระดับไมโคร	39
4.7 โครงสร้างทางจุลภาคของชิ้นงานตัวอย่างที่ประดิษฐ์จากผงในระดับไมโครเผาซินเตอร์	
ที่อุณหภูมิ (a) 1200°C (c) 1250°C (e) 1300°C และชิ้นงานตัวอย่างที่ประดิษฐ์จาก	- \
ผงในระดับนาโน เผาซินเตอร์ที่อุณหภูมิ (b) 1200°C (d) 1250°C (f) 1300°C	40
4.8 โครงสร้างทางจุลภาคของชิ้นงานตัวอย่างที่ประดิษฐ์จากผงในระดับนาโนและ	Z
เผาซินเตอร์ที่อุณหภูมิ 1200°C	41
4.9 ผลของอุณหภูมิต่อความทนทานต่อการกดดัดของชิ้นงานตัวอย่างที่ประดิษฐ์จาก	
ผงในระดับนาโนและระดับไมโคร	42
4.10 ตัวอย่างชิ้นงานหลังเผาซินเตอร์ที่อุณหภูมิ 1150 1200 1250 และ 1300 [°] C	
เป็นเวลา 3 ชั่วโมง ในเตาไฟฟ้า	43
4.11 แบบอย่างการเลี้ยวเบนของรังสีเอกซ์ของชิ้นงานตัวอย่าง เมื่อ	
(a) การเผาซินเตอร์แบบดั้งเดิม และ (b) rate-controlled sintering	44
4.12 SEM ตรงรอยหักของชิ้นงานตัวอย่างหลังเผาซินเตอร์ (a-d) การเผาซินเตอร์แบบดั้งเดิม	7 /
และ (e-f) rate-controlled sintering โดยเผาที่อุณหภูมิ 1150 ⁰ C (a และ e)	
1200°C (b ແລະ f) 1250°C (c ແລະ g) ແລະ1300°C (d ແລະ h) ຫາມລຳດັບ	45
4.12 SEM ตรงรอยหักของชิ้นงานตัวอย่างหลังเผาซินเตอร์ (a-d) การเผาซินเตอร์แบบดั้งเดิม	
และ (e-f) rate-controlled sintering โดยเผาที่อุณหภูมิ 1150 ⁰ C (a และ e)	
1200°C (b และ f) 1250°C (c และ g) และ1300°C (d และ h) ตามลำดับ (ต่อ)	46
4.13 โครงสร้างนาโนเกรนของชิ้นงานตัวอย่างที่เผาซินเตอร์ด้วยวิธีการแบบ	
rate-controlled sintering ที่ อุณหภูมิ 1200°C	46
4.14 ความสัมพันธ์ระหว่างอุณหภูมิที่ใช้ในก [้] ารเผาซินเตอร์กับความหนาแน่น	47
4.15 ความสัมพันธ์ระหว่างอุณหภูมิที่ใช้ในการเผาชินเตอร์กับ Microhardness	48
4.16 ความสัมพันธ์ระหว่างอุณหภูมิที่ใช้ในการเผาซินเตอร์กับความทนทานต่อการกดดัด	49
4.17 รอยกดบนพื้นผิวของเซรามิกตัวอย่างที่เผาซินเตอร์ด้วยวิธีการแบบ	
rate-controlled sintering ที่อุณหภูมิ 1200 °C	50

สารบัญภาพ

